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LETTER TO THE EDITOR 

Exact solutions for anharmonic oscillators 

George P Flessas 
Department of Natural Philosophy, University of Glasgow, Glasgow G12 8QQ, Scotland, 
UK 

Received 23 March 1981 

Abstract. We complete an investigation started in an earlier work and present exact 
solutions and eigenvalues for anharmonic oscillators, the solutions being given in the form 
of definite integrals. The conditions for the validity of these results are investigated. 

In a recent paper (Flessas 1981) we found rigorous solutions for the one-dimensional 
quantum mechanical doubly anharmonic oscillator defined by the potential 

V(x) = 02x2/2 + hx4/4 + 77x6/6 77'0 --03<x<Oc), (1) 

in the form of definite integrals. Here we generalise those results and consider 
anharmonic interactions (Flessas and Das 1980, Magyari 1981) 

(N = 1,2,  3, . . .) w2x2 2N X 2 n + 2  
Vdx)=-+ c 4+1-  a2N+1> 0 2 ,,=I 2 n + 2  

which may be of interest in various models of the charmonium system. We illustrate the 
procedure to be followed for 

V2(x) = w2x2/2 +a2x4/4 + a3x6/6 + u4x8/8 + asx'O/10 a5 > 0 ,  (3) 

in which case the Schrodinger equation reads 

--.+2E-w d2 a2x4 a3x6 a4x8 u5x10 
(dx2 2 3 4  5 

The substitutions 

Y (x) = g(t) 2 x =t,  

transform equation (4) into 

d2 1 d E w2t azt2 a3t3 a4t4 airs) 
dt2 2 dt 2 4 8 12 16 20 

. t-+- -+ g(t)=O 

(4) 

A study of the differential equation (6) reveals that the ansatz 

g(t) = td exp(at3 + bt2 + ct) ue exp(a'u3 + b'u2+ c 'u )  du (7) Lo 
will provide an exact solution to equation (6). Indeed we obtain, after performing a 
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partial integration, that 

g ( t )  = -2 exp(-ut3 - bt2 - c t )  -4t1/’ exp(ut3 + bt2 + ct)  

(3uu3l2 + 2bu1/’+ cu-”’) exp(-2uu3 - 2bu’ -2cu )  du lof 
is an exact solution to equation ( 6 )  with 

a = ( ~ ~ / 5 ) ~ / ’ / 6  (as > 0 )  

b = u 4 ( 5 / ~ 5 ) ~ / ~ / 3 2  

c = ( u 3 / 1 2  - 5 ~ 4 2 / ( 2 5 6 ~ s ) ) ( 5 / ~ s ) ” ’ ,  

provided the conditions 

u2 = 6 ( ~ ~ / 5 ) ’ / ~ +  5a4(u3/12 - 5 u ~ / ( 2 5 6 u j ) ) / u 5  

U’ = 20(u3 /12  - 5 ~ ~ / ( 2 5 6 u ~ ) ) ~ / a ~  + 3u4(5/a j ) ’ / ’ /8  

E = - 3 ( 5 / ~ ~ ) ~ / ’ ( ~ ~ / 1 2  - 5&(256u5)) 

are satisfied. Now since (Gradshteyn and Ryzhik 1965) 

lom exp(-pu2- -,U) du = (2p)-”/’r(m) exp - D-, (&), 
m and p being both positive, and as U > 0 (cf equation ( 9 ) )  the integral in equation (8), 
denoted henceforth by I ( t ) ,  exists for O s t s 0 0 ;  D-,(w) is the parabolic cylinder 
function. 

However, in order that g ( t )  be physically acceptable we must show that 
limtem g ( t )  = 0. To facilitate the discussion and to avoid complex quantities in what 
follows we are going to make the reasonable assumption 

a4 > 0. (16 )  

Then by applying the mean value theorem and equation (15 )  to I ( w )  we have: 

I ( CO) = or exp(c ’ / 4 b  - 2ut; ) (4b)’/‘[i-( us /  5)’(8/ a4)3/2D-5/2(  -2) 
1 1/2 

where tl originates from the mean value theorem and since 0 s I(co) < 00 then 0 s tl  = 
t l (u ,  6,  c ) .  Taking into account now equation ( 8 )  and equation (17 )  we observe that to 
ensure limt+m g ( t )  = 0 it is necessary and sufficient to require 

where we used the relation (Abramowitz and Stegun 1970) 

~ ( a ,  Z )  = ,A-(;+ a)(sin T ( Y D - , - ~ / ~ ( Z )  + ~ - ~ - 1 / 2 ( - 2 ) )  (19 )  

with V ( a ,  z )  being the parabolic cylinder V-function. Equation (18 )  shows (as D-, > 0 
for m > 0) that z > 0 and consequently also 

c < o .  (20 )  
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Condition (18), which appropriately extends relation (14) of Flessas (1981), is solvable 
as long as z > V(1, z ) /  V(0,  z )  and this is definitely the case for z 3 0.8. For example, 
let z = 1. Then equation (18) becomes (cf the tables of Abramowitz and Stegun) 

5/u5 = ( 8 / ~ 4 ) ~ ’ ~ 3 . 7  (2 = 1). (21) 

1 = ( - ~ 3 /  12 + 5 U : / ( 2 5 6 ~ ” ) ( 5 / ~ 5 ) ’ / ~ ( ~ 4 ) - ~ ’ ~ ( 3 2 ) ~ ’ ’ .  

Further, recalling z = - ~ / ( b ) ’ / ~  and using equations (10)-(11) we obtain 

(22) 
On replacing 5 / u 5  in equation (22) byequation (21) we deduce an equation for u 3  which 
can be immediately solved for any u4 > 0. 

We summarise now our results. Equations (9, (8)-(11) constitute an exact and 
normalisable solution for equation (4) provided the three relations (12)-(13) and (18) 
hold between o, u2, u3,  u4, u5. The eigenvalue is given by expression (14). In practice 
we can fix arbitrary u5 > 0, u4 > 0 then determine from equation (18) u3 as described 
above and finally u2, w. As y ( x )  is nodeless, equation (14) corresponds to the ground 
state. By multiplying the ansatz (7) with a polynomial in t we may obtain excited states 
by analogy with the three-dimensional case for equation (2) (Flessas and Das 1980). It 
is worth noticing that conditions (12)-(13) are markedly different from those following 
from the ansatz (Flessas and Das 1980) for equation (4) 

g(t) = td  exp(al t3+bl t2+cl t ) .  (23) 

This of course implies that equation (7) is not just the second linearly independent from 
equation (23) solution to the eigenvalue problem (4). We also remark that Khare 
(1981) has very recently shown that some of the exact solutions of Flessas and Das 
(1980) are inaccessible to perturbation theory. Hence we may conjecture that the 
rigorous results of this work can also be used to test the validity of various approxima- 
tions applied to general multiterm potentials. 

In the case of the potential (2) the ansatz (7) is generalised to 

g(t)=tdeXp(aN+lt N+1 +aNtN+*  **+cu l t )  1‘ ue’exp(cu;V+luN+l+* *o+cuiu)du 
i’20 

(24) 

while ( N +  1) relations of the type (12)-(13) and (18) are fulfilled. 
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